Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.520
Filtrar
1.
Sci Total Environ ; 927: 172257, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608912

RESUMO

Waterborne pathogens threaten 2.2 billion people lacking access to safely managed drinking water services, causing over a million annual diarrheal deaths. Individuals without access to chlorine reagents or filtration devices often resort to do-it-yourself (DIY) methods, such as boiling or solar disinfection (SODIS). However, these methods are not simple to implement. In this study, we introduced an innovative and easily implemented disinfection approach. We discovered that immersing aluminum foil in various alkaline solutions produces alkali-treated aluminum foil (ATA foil) that effectively adsorbs Escherichia coli (E. coli), Salmonella, and Acinetobacter through the generated surface aluminum hydroxide. For example, a 25 cm2 ATA foil efficiently captures all 104E. coli DH5α strains in 100 mL water within 30 min. Using a saturated suspension of magnesium hydroxide, a type of fertilizer, as the alkaline solution, the properties of the saturated suspension eliminate the need for measuring reagents or changing solutions, making it easy for anyone to create ATA foil. ATA foils can be conveniently produced within mesh bags and placed in household water containers, reducing the risk of recontamination. Replacing the ATA foil with a foil improves the adsorption efficiency, and re-immersing the used foil in the production suspension restores its adsorption capacity. Consequently, ATA foil is an accessible and user-friendly alternative DIY method for underserved communities. Verification experiments covering variations in the water quality and climate are crucial for validating the efficacy of the foil. Fortunately, the ATA foil, with DIY characteristics similar to those of boiling and SODIS, is well-suited for testing under diverse global conditions, offering a promising solution for addressing waterborne pathogens worldwide.


Assuntos
Desinfecção , Água Potável , Purificação da Água , Água Potável/microbiologia , Água Potável/química , Desinfecção/métodos , Purificação da Água/métodos , Microbiologia da Água , Abastecimento de Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-38397659

RESUMO

BACKGROUND: In August 2022, the Hellenic National Public Health Organisation was notified about a gastroenteritis outbreak in town A in Southern Greece. Investigations aimed to identify the source and implement control measures. METHODS: Case definition categories were used in a 1:3 case-control study. Cases and controls were interviewed about various exposures. Cases' stool samples were cultured on agar plates and characterised by serotyping, antimicrobial susceptibility testing and Pulse Field Gel Electrophoresis (PFGE). Environmental investigations included tap water sampling for microbiological and chemical analysis in town A and inspection of the water supply system. RESULTS: We identified 33 cases (median age: 17 years). Tap water consumption was the only significant risk factor for gastroenteritis (OR = 5.46, 95% CI = 1.02-53.95). Salmonella (S.) Bovismorbificans isolated from eight stool and one tap water samples had identical PFGE profiles. No resistant isolates were identified. Residual chlorine levels were lower than the acceptable limits before and during the outbreak. We advised consumption of bottled water and adherence to strict hand hygiene rules until tap water was declared suitable for drinking. CONCLUSIONS: Epidemiological and molecular data revealed a waterborne S. Bovismorbificans outbreak in town A. We recommend local water safety authorities to ensure that residual chlorine levels comply with the legislation towards water safety planning, to mitigate risks.


Assuntos
Água Potável , Gastroenterite , Humanos , Adolescente , Estudos de Casos e Controles , Grécia/epidemiologia , Cloro , Surtos de Doenças , Gastroenterite/etiologia , Água Potável/microbiologia , Salmonella/genética
3.
Environ Int ; 185: 108538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422875

RESUMO

Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).


Assuntos
Água Potável , Engenharia Sanitária , Abastecimento de Água , RNA Ribossômico 16S/genética , Microbiologia da Água , Bactérias/genética , Biofilmes , Aço , Água Potável/microbiologia
4.
Water Res ; 253: 121109, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377920

RESUMO

Running cold and hot water in buildings is a widely established commodity. However, interests regarding hygiene and microbiological aspects had so far been focussed on cold water. Little attention has been given to the microbiology of domestic hot-water installations (DHWIs), except for aspects of pathogenic Legionella. World-wide, regulations consider hot (or warm) water as 'heated drinking water' that must comply (cold) drinking water (DW) standards. However, the few reports that exist indicate presence and growth of microbial flora in DHWIs, even when supplied with water with disinfectant residual. Using flow cytometric (FCM) total cell counting (TCC), FCM-fingerprinting, and 16S rRNA-gene-based metagenomic analysis, the characteristics and composition of bacterial communities in cold drinking water (DW) and hot water from associated boilers (operating at 50 - 60 °C) was studied in 14 selected inhouse DW installations located in Switzerland and Austria. A sampling strategy was applied that ensured access to the bulk water phase of both, supplied cold DW and produced hot boiler water. Generally, 1.3- to 8-fold enhanced TCCs were recorded in hot water compared to those in the supplied cold DW. FCM-fingerprints of cold and corresponding hot water from individual buildings indicated different composition of cold- and hot-water microbial floras. Also, hot waters from each of the boilers sampled had its own individual FCM-fingerprint. 16S rRNA-gene-based metagenomic analysis confirmed the marked differences in composition of microbiomes. E.g., in three neighbouring houses supplied from the same public network pipe each hot-water boiler contained its own thermophilic bacterial flora. Generally, bacterial diversity in cold DW was broad, that in hot water was restricted, with mostly thermophilic strains from the families Hydrogenophilaceae, Nitrosomonadaceae and Thermaceae dominating. Batch growth assays, consisting of cold DW heated up to 50 - 60 °C and inoculated with hot water, resulted in immediate cell growth with doubling times between 5 and 10 h. When cold DW was used as an inoculum no significant growth was observed. Even boilers supplied with UVC-treated cold DW contained an actively growing microbial flora, suggesting such hot-water systems as autonomously operating, thermophilic bioreactors. The generation of assimilable organic carbon from dissolved organic carbon due to heating appears to be the driver for growth of thermophilic microbial communities. Our report suggests that a man-made microbial ecosystem, very close to us all and of potential hygienic importance, may have been overlooked so far. Despite consumers having been exposed to microbial hot-water flora for a long time, with no major pathogens so far been associated specifically with hot-water usage (except for Legionella), the role of harmless thermophiles and their interaction with potential human pathogens able to grow at elevated temperatures in DHWIs remains to be investigated.


Assuntos
Água Potável , Legionella , Humanos , Água Potável/microbiologia , RNA Ribossômico 16S , Ecossistema , Abastecimento de Água , Bactérias/genética , Microbiologia da Água
5.
Sci Total Environ ; 927: 171301, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423320

RESUMO

The occurrence of harmful algal blooms (HABs) in freshwater environments has been expanded worldwide with growing frequency and severity. HABs can pose a threat to public water supplies, raising concerns about safety of treated water. Many studies have provided valuable information about the impacts of HABs and management strategies on the early-stage treatment processes (e.g., pre-oxidation and coagulation/flocculation) in conventional drinking water treatment plants (DWTPs). However, the potential effect of HAB-impacted water in the granular media filtration has not been well studied. Biologically-active filters (BAFs), which are used in drinking water treatment and rely largely on bacterial community interactions, have not been examined during HABs in full-scale DWTPs. In this study, we assessed the bacterial community structure of BAFs, functional profiles, assembly processes, and bio-interactions in the community during both severe and mild HABs. Our findings indicate that bacterial diversity in BAFs significantly decreases during severe HABs due to the predominance of bloom-associated bacteria (e.g., Spingopyxis, Porphyrobacter, and Sphingomonas). The excitation-emission matrix combined with parallel factor analysis (EEM-PARAFAC) confirmed that filter influent affected by the severe HAB contained a higher portion of protein-like substances than filter influent samples during a mild bloom. In addition, BAF community functions showed increases in metabolisms associated with intracellular algal organic matter (AOM), such as lipids and amino acids, during severe HABs. Further ecological process and network analyses revealed that severe HAB, accompanied by the abundance of bloom-associated taxa and increased nutrient availability, led to not only strong stochastic processes in the assembly process, but also a bacterial community with lower complexity in BAFs. Overall, this study provides deeper insights into BAF bacterial community structure, function, and assembly in response to HABs.


Assuntos
Água Potável , Filtração , Proliferação Nociva de Algas , Purificação da Água , Purificação da Água/métodos , Água Potável/microbiologia , Bactérias , Microbiota , Microbiologia da Água
6.
Sci Total Environ ; 914: 169933, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199366

RESUMO

An abundant body of scientific studies and regulatory guidelines substantiates antimicrobial efficacy of freshwater chlorination ensuring drinking water safety in large populations worldwide. In contrast to the purposeful use of chlorination ensuring antimicrobial safety of drinking water, only a limited body of research has addressed the molecular impact of chlorinated drinking water exposure on the gut microbiota. Here, for the first time, we have examined the differential effects of drinking water regimens stratified by chlorination agent [inorganic (HOCl) versus chloramine (TCIC)] on the C57BL/6J murine fecal microbiota. To this end, we exposed C57BL/6J mice to chlorinated drinking water regimens followed by fecal bacterial microbiota analysis at the end of the three-week feeding period employing 16S rRNA sequencing. α-diversity was strongly reduced when comparing chlorinated versus control drinking water groups and community dissimilarities (ß-diversity) were significant between groups even when comparing HOCl and TCIC. We detected significant differences in fecal bacterial composition as a function of drinking water chlorination observable at the phylum and genus levels. Differential abundance analysis of select amplicon sequence variants (ASVs) revealed changes as a function of chlorination exposure [up: Lactobacillus ASV1; Akkermansia muciniphila ASV7; Clostridium ss1 ASV10; down: Ileibacterium valens ASV5; Desulfovibrio ASV11; Lachnospiraceae UCG-006 ASV15]. Given the established complexity of murine and human gastrointestinal microbiota and their role in health and disease, the translational relevance of the chlorination-induced changes documented by us for the first time in the fecal murine microbiota remains to be explored.


Assuntos
Anti-Infecciosos , Água Potável , Microbiota , Camundongos , Humanos , Animais , Água Potável/microbiologia , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL
7.
Appl Environ Microbiol ; 90(2): e0165823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38236032

RESUMO

In this study, we compared conventional vacuum filtration of small volumes through disc membranes (effective sample volumes for potable water: 0.3-1.0 L) with filtration of high volumes using ultrafiltration (UF) modules (effective sample volumes for potable water: 10.6-84.5 L) for collecting bacterial biomass from raw, finished, and tap water at seven drinking water systems. Total bacteria, Legionella spp., Legionella pneumophila, Mycobacterium spp., and Mycobacterium avium complex in these samples were enumerated using both conventional quantitative PCR (qPCR) and viability qPCR (using propidium monoazide). In addition, PCR-amplified gene fragments were sequenced for microbial community analysis. The frequency of detection (FOD) of Legionella spp. in finished and tap water samples was much greater using UF modules (83% and 77%, respectively) than disc filters (24% and 33%, respectively). The FODs for Mycobacterium spp. in raw, finished, and tap water samples were also consistently greater using UF modules than disc filters. Furthermore, the number of observed operational taxonomic units and diversity index values for finished and tap water samples were often substantially greater when using UF modules as compared to disc filters. Conventional and viability qPCR yielded similar results, suggesting that membrane-compromised cells represented a minor fraction of total bacterial biomass. In conclusion, our research demonstrates that large-volume filtration using UF modules improved the detection of opportunistic pathogens at the low concentrations typically found in public drinking water systems and that the majority of bacteria in these systems appear to be viable in spite of disinfection with free chlorine and/or chloramine.IMPORTANCEOpportunistic pathogens, such as Legionella pneumophila, are a growing public health concern. In this study, we compared sample collection and enumeration methods on raw, finished, and tap water at seven water systems throughout the State of Minnesota, USA. The results showed that on-site filtration of large water volumes (i.e., 500-1,000 L) using ultrafiltration membrane modules improved the frequency of detection of relatively rare organisms, including opportunistic pathogens, compared to the common approach of filtering about 1 L using disc membranes. Furthermore, results from viability quantitative PCR (qPCR) with propidium monoazide were similar to conventional qPCR, suggesting that membrane-compromised cells represent an insignificant fraction of microorganisms. Results from these ultrafiltration membrane modules should lead to a better understanding of the microbial ecology of drinking water distribution systems and their potential to inoculate premise plumbing systems with opportunistic pathogens where conditions are more favorable for their growth.


Assuntos
Azidas , Água Potável , Legionella pneumophila , Legionella , Mycobacterium , Propídio/análogos & derivados , Água Potável/microbiologia , Mycobacterium/genética , Microbiologia da Água , Abastecimento de Água , Legionella/genética
8.
Am J Trop Med Hyg ; 110(2): 346-355, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38167625

RESUMO

Access to potable water is difficult for many African residents. This study evaluated the bacteriological quality of household water collected in the dry and wet seasons across five municipal local government areas (LGAs) in Ibadan, a large city in southwest Nigeria. A total of 447 water samples (dry season, n = 250; wet season, n = 197) were aseptically collected from a random sample of mapped households within Ibadan's five municipal LGAs. The pH values and total aerobic and coliform bacterial counts were measured, and samples were screened for Escherichia coli, Salmonella, Shigella, and Yersinia by standard phenotypic techniques and multiplex polymerase chain reaction. The most common source of water was well (53.2%), followed by borehole (34%). None of the households used municipal tap water. Cumulatively, aerobic (P = 0.0002) and coliform (P = 0.0001) counts as well as pH values (P = 0.0002) changed significantly between seasons, with increasing and decreasing counts depending on the LGA. Nonpotable water samples were found to be very common during the dry (86.8%) and wet (74.1%) seasons. Escherichia coli spp., as indicators of recent fecal contamination, were isolated from 115 (25.7%) of the household water sources. Thirty three Salmonella, four enteroaggregative E. coli, and four enterotoxigenic E. coli isolates but no Shigella or Yersinia isolates were identified. This study revealed the absence of treated tap water and the poor quality of alternative sources with detectable pathogens in municipal Ibadan. Addressing the city-wide lack of access to potable water is an essential priority for preventing a high prevalence of feco-orally transmitted infections.


Assuntos
Água Potável , Abastecimento de Água , Humanos , Água Potável/microbiologia , Escherichia coli , Nigéria/epidemiologia , Cidades , Microbiologia da Água , Qualidade da Água
9.
Water Res ; 249: 120922, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043346

RESUMO

The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.


Assuntos
Água Potável , Genes Bacterianos , Água Potável/microbiologia , Halogenação , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Antibacterianos/farmacologia
10.
Environ Pollut ; 342: 123066, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048871

RESUMO

While traditional culture-dependent methods can effectively detect certain microorganisms, the comprehensive composition of the municipal drinking water (DW) microbiome, including bacteria, archaea, and viruses, remains unknown. Metagenomic sequencing has opened the door to accurately determine and analyze the entire microbial community of DW, providing a comprehensive understanding of DW species diversity, especially in the context of public health concerns during the COVID-19 era. In this study, we found that most of the culturable bacteria and some fecal indicator bacteria, such as Escherichia coli and Pseudomonas aeruginosa, were non-culturable using culture-dependent methods in all samples. However, metagenomic analysis showed that the predominant bacterial species in the DW samples belonged to the phyla Proteobacteria and Planctomycetes. Notably, the genus Methylobacterium was the most abundant in all water samples, followed by Sphingomonas, Gemmata, and Azospirilum. While low levels of virulence-associated factors, such as the Esx-5 type VII secretion system (T7SS) and DevR/S, were detected, only the erythromycin resistance gene erm(X), an rRNA methyltransferase, was identified at low abundance in one sample. Hosts corresponding to virulence and resistance genes were identified in some samples, including Mycobacterium spp. Archaeal DNA (Euryarchaeota, Crenarchaeota) was found in trace amounts in some DW samples. Viruses such as rotavirus, coxsackievirus, human enterovirus, and SARS-CoV-2 were negative in all DW samples using colloidal gold and real-time reverse transcription polymerase chain reaction (RT‒PCR) methods. However, DNA encoding a new order of reverse-transcribing viruses (Ortervirales) and Herpesvirales was found in some DW samples. The metabolic pathways of the entire microbial community involve cell‒cell communication and signal secretion, contributing to cooperation between different microbial populations in the water. This study provides insight into the microbial community and metabolic process of DW in Hangzhou, China, utilizing both culture-dependent methods and metagenomic sequencing combined with bioinformatics tools during the COVID-19 pandemic era.


Assuntos
Água Potável , Microbiota , Humanos , Água Potável/microbiologia , Pandemias , Bactérias/genética , Archaea , Microbiota/genética , RNA Ribossômico 16S/genética
11.
Environ Pollut ; 341: 122902, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949160

RESUMO

Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (rs = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Água Potável/microbiologia , Desinfecção/métodos , Cloraminas/farmacologia , Cloro/farmacologia , Cloro/análise , Prevalência , RNA Ribossômico 16S , Antagonistas de Receptores de Angiotensina/farmacologia , Purificação da Água/métodos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Desinfetantes/farmacologia , Desinfetantes/análise , Bactérias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Genes Bacterianos
12.
Environ Sci Technol ; 57(48): 20360-20369, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37970641

RESUMO

Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.


Assuntos
Água Potável , Água Potável/microbiologia , RNA Ribossômico 16S/genética , Corrosão , Micobactérias não Tuberculosas/genética , Fosfatos , Microbiologia da Água
13.
J Infect Public Health ; 16 Suppl 1: 210-216, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951730

RESUMO

The presence of biofilms in drinking water distribution systems (DWDS) in healthcare settings poses a considerable risk to the biological security of water, particularly when the biofilm bacteria demonstrate antimicrobial resistance characteristics. This study aimed to investigate the occurrence of antibiotic-resistant bacteria (ARB) in biofilms within DWDS of hospitals. The chlorine resistance of the isolated ARB was analyzed, and then chlorine-resistant bacteria (CRB) were identified using molecular methods. Additionally, the presence of several antibiotic resistance genes (ARGs) was monitored in the isolated ARB. Out of the 41 biofilm samples collected from hospitals, ARB were detected in 32 (78%) of the samples. A total of 109 colonies of ARB were isolated from DWDS of hospitals, with ß-lactam resistant bacteria, including ceftazidime-resistant and ampicillin-resistant bacteria, being the most frequently isolated ARB. Analyzing of ARGs revealed the highest detection of aac6, followed by sul1 gene. However, the ß-lactamase genes blaCTX-M and blaTEM were not identified in the ARB, suggesting the presence of other ß-lactamase genes not included in the tested panel. Exposure of ARB to free chlorine at a concentration of 0.5 mg/l showed that 64% of the isolates were CRB. However, increasing the chlorine concentration to 4 mg/l decreased the high fraction of ARB (91%). The domi||nant CRB identified were Sphingomonas, Brevundimonas, Stenotrophomonas, Bacillus and Staphylococcus with Bacillus exhibiting the highest frequency. The results highlight the potential risk of biofilm formation in the DWDS of hospitals, leading to the dissemination of ARB in hospital environments, which is a great concern for the health of hospitalized patients, especially vulnerable individuals. Surveillance of antimicrobial resistance in DWDS of hospitals can provide valuable insights for shaping antimicrobial use policies and practices that ensure their efficacy.


Assuntos
Anti-Infecciosos , Infecção Hospitalar , Água Potável , Humanos , Cloro/farmacologia , Infecção Hospitalar/epidemiologia , Incidência , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , Água Potável/microbiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Hospitais , Biofilmes , Genes Bacterianos
14.
Environ Monit Assess ; 195(12): 1442, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945767

RESUMO

The precise detection of pathogenic microorganisms is crucial for the reduction of water-borne diseases. Herein, a filter-paper-based florescent chemosensor was fabricated for the detection of Escherichia coli and Staphylococcus aureus contamination exploiting protein-DNA interaction between the target and a specific probe. The sensing mechanism involved the self-assembly of Rhodamine B (RhB) on silver nanoparticles (AgNPs) surface that was labeled with a single-stranded DNA probe. This causes the fluorescence quenching of RhB by a distant-dependant process. The hybridization between pathogen-specific probe and bacterial surface protein causes the release of fluorescence of RhB, which was observed under UV light. For paper-based bio-surface preparation, the mixture comprising RhB-AgNP-ssDNA was drop-casted on filter paper discs. The conditions were optimized using isolated genomic DNA of the microbes. The method was applied for E.coli detection using an eae gene-based probe targeting intimin protein and S. aureus detection using tuf gene-based probe targeting EF-tuf protein on the microbe's surface. The chemosensor had a notable specificity and selectivity for E.coli, and S. aureus, with detection limits of 0.6 × 108 and 0.37 × 103 CFU/mL respectively. Moreover, the sensor was tested on real water samples, which presented excellent reproducibility of results (RSD ≤ 0.24%). Furthermore, the gradient change of fluorescence was captured by a smartphone, which allows direct detection of pathogens in a sensitive semi-quantitative way without the need for expensive instruments. The designed chemosensor can serve as a simple, inexpensive, and rapid method for the on-site detection of microbial contamination in drinking water.


Assuntos
Técnicas Biossensoriais , Água Potável , Nanopartículas Metálicas , Água Potável/microbiologia , Staphylococcus aureus/genética , Prata , Técnicas Biossensoriais/métodos , Smartphone , Reprodutibilidade dos Testes , Monitoramento Ambiental , Escherichia coli/genética , DNA
15.
Biofouling ; 39(7): 691-705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811587

RESUMO

The activity of two chlorinated isocyanurates (NaDCC and TCCA) and peroxymonosulphate (OXONE) was evaluated against biofilms of Stenotrophomonas maltophilia, an emerging pathogen isolated from drinking water (DW), and for the prevention of biofilm regrowth. After disinfection of pre-formed 48 h-old biofilms, the culturability was reduced up to 7 log, with OXONE, TCCA, and NaDCC showing more efficiency than free chlorine against biofilms formed on stainless steel. The regrowth of biofilms previously exposed to OXONE was reduced by 5 and 4 log CFU cm-2 in comparison to the unexposed biofilms and biofilms exposed to free chlorine, respectively. Rheometry analysis showed that biofilms presented properties of viscoelastic solid materials, regardless of the treatment. OXONE reduced the cohesiveness of the biofilm, given the significant decrease in the complex shear modulus (G*). AFM analysis revealed that biofilms had a fractured appearance and smaller bacterial aggregates dispersed throughout the surface after OXONE exposure than the control sample. In general, OXONE has been demonstrated to be a promising disinfectant to control DW biofilms, with a higher activity than chlorine. The results also show the impact of the biofilm mechanical properties on the efficacy of the disinfectants in biofilm control.


Assuntos
Desinfetantes , Água Potável , Stenotrophomonas maltophilia , Cloro/farmacologia , Biofilmes , Desinfetantes/farmacologia , Água Potável/microbiologia
16.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37528059

RESUMO

Waterborne disease is increasingly becoming associated with opportunistic premise plumbing pathogens (OPPPs), which can resist residual chlorination, regrow throughout drinking water distribution systems, and colonize premise plumbing. Nontuberculous mycobacteria (NTM) include clinically important species and exert a high burden on healthcare systems. We briefly report a qPCR-based survey of Mycobacterium spp. numbers in tap, POU-treated, and shower waters from Bangkok, Thailand. Non-stagnant tap waters and non-stagnant shower waters had mean numbers of 1.3 × 103 and 2.4 × 103 copies/mL, respectively. Water stagnation resulted in mean numbers higher by up to 1.0 log. The lowest number, 25 copies/mL, was obtained from a POU-treated sample, while the highest number, 2.0 × 104 copies/mL, came from a stagnant tap. Comparing with international data, mean numbers in this study were greater than those in nine out of 11 (82%) comparable studies, and the maximum numbers in this study were also high. Our samples of Bangkok waters exhibited relatively high Mycobacterium spp. numbers, suggesting the need for appropriate POU treatment systems where NTM infection is a health concern. This survey data can be used to set inactivation performance targets in POU water disinfection system design and may also lead to quantitative microbial risk assessment (QMRA) studies.


Assuntos
Água Potável , Mycobacterium , Tailândia , Microbiologia da Água , Mycobacterium/genética , Água Potável/microbiologia , Micobactérias não Tuberculosas , Abastecimento de Água
17.
Environ Pollut ; 335: 122311, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37543075

RESUMO

Due to the intensive use of antibiotics, the drinking water distribution system (DWDS) has become one of the hotspots of antibiotic resistance. However, little is known about the role of biofilm in the aspect of spreading resistance in DWDS. In present study, four lab-scale biological annular reactors (BAR) were constructed to investigate the transmission of ARGs exposed to a certain amount of antibiotic (sulfamethoxazole) synergistic disinfectants. It was emphasized that pipe wall biofilm was an important way for ARGs to propagate in the pipeline, and the results were quantified by constructing an operational taxonomic unit (OTU) network map. The network analysis results showed the biofilm contribution to waterborne bacteria was finally estimated to be 51.45% and 34.27% in polyethylen (PE) pipe and ductile iron (DI) pipe, respectively. The proportion of vertical gene transfer (VGT) in biofilm was higher than that in water, and the occurrence of this situation had little relationship with the selection of pipe type. Overall, this study revealed how biofilm promoted the transmission of resistome in bulk water, which can provide insights into assessing biofilm-associated risks and optimizing pipe material selection for biofilm control in DWDS.


Assuntos
Desinfetantes , Água Potável , Água Potável/microbiologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Biofilmes , Antibacterianos/toxicidade , Abastecimento de Água
18.
Water Res ; 242: 120172, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307683

RESUMO

Culture-independent data can be utilized to identify heterotrophic plate count (HPC) exceedances in drinking water. Although HPC represents less than 1% of the bacterial community and exhibits time lags of several days, HPC data are widely used to assess the microbiological quality of drinking water and are incorporated into drinking water standards. The present study confirmed the nonlinear relationships between HPC, intact cell count (ICC), and adenosine triphosphate (ATP) in tap water samples (stagnant and flushed). By using a combination of ICC, ATP, and free chlorine data as inputs, we show that HPC exceedance can be classified using a 2-layer feed-forward artificial neural network (ANN). Despite the nonlinearity of HPC, the best binary classification model showed accuracies of 95%, sensitivity of 91%, and specificity of 96%. ICC and chlorine concentrations were the most important features for classifiers. The main limitations, such as sample size and class imbalance, were also discussed. The present model provides the ability to convert data from emerging measurement techniques into established and well-understood measures, overcoming culture dependence and offering near real-time data to help ensure the biostability and safety of drinking water.


Assuntos
Água Potável , Água Potável/microbiologia , Abastecimento de Água , Cloro/análise , Microbiologia da Água , Contagem de Colônia Microbiana , Trifosfato de Adenosina
19.
Environ Sci Pollut Res Int ; 30(27): 71194-71208, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37162675

RESUMO

Freshwater blooms of harmful cyanobacteria in drinking water source-oriented shallow lakes affect public health and ecosystem services worldwide. Therefore, identifying 2-methylisoborneol (2-MIB)-producing cyanobacteria and predicting the risks of 2-MIB are critical for managing 2-MIB-infected water sources. Previous studies on the potential producers and risks of 2-MIB have focused on reservoirs or have been limited by the ecosystems of phytoplankton-dominated areas. We investigated the producers, distribution, and occurrence of 2-MIB in East Taihu Lake-a drinking water source-oriented shallow lake with macrophyte- and phytoplankton-dominated areas-from August 2020 to November 2021. We observed that Pseudanabaena sp. produces 2-MIB in this lake, as determined by the maximum correlation coefficient (R = 0.71, p < 0.001), maximum detection rate, and minimum false positive/negative ratio exhibited by this genus. Extreme odor events occurred in this lake during late summer and early autumn in 2021, with the mean 2-MIB concentration increasing to 727 ± 426 ng/L and 369 ± 176 ng/L in August and September, respectively. Moreover, the macrophyte-dominated area, particularly the wetland area, exhibited a significant decrease (p < 0.01) in bloom intensity and 2-MIB production during these extreme odor events. Pseudanabaena sp. outbreak was likely owing to eutrophication, seasonal gradients, and macrophyte reduction, considering that temporal trends were consistent with high water temperature, high total phosphorus levels, and low-light conditions. Moreover, 2-MIB production was sensitive to short-term hydrometeorological processes, with high water levels and radiant intensity enhancing 2-MIB production. The risk assessment results showed that the probability of 2-MIB concentration exceeding the odor threshold (10 ng/L) is up to 90% when the cell density of Pseudanabaena sp. reaches 1.8 × 107 cell/L; this risk is reduced to 50 and 25% at densities of < 3.8 × 105 cell/L and 5.6 × 104 cell/L, respectively. Our findings support calls for shallow lake management efforts to maintain a macrophyte-dominated state and control odorous cyanobacteria growth.


Assuntos
Cianobactérias , Água Potável , Água Potável/microbiologia , Lagos , Ecossistema , Fitoplâncton , Eutrofização , Fósforo/análise , Medição de Risco , China
20.
Water Res ; 229: 119495, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37155494

RESUMO

The emergence and development of next-generation sequencing technologies (NGS) has made the analysis of the water microbiome in drinking water distribution systems (DWDSs) more accessible and opened new perspectives in microbial ecology studies. The current study focused on the characterization of the water microbiome employing a gene- and genome-centric metagenomic approach to five waterworks in Finland with different raw water sources, treatment methods, and disinfectant. The microbial communities exhibit a distribution pattern of a few dominant taxa and a large representation of low-abundance bacterial species. Changes in the community structure may correspond to the presence or absence and type of disinfectant residual which indicates that these conditions exert selective pressure on the microbial community. The Archaea domain represented a small fraction (up to 2.5%) and seemed to be effectively controlled by the disinfection of water. Their role particularly in non-disinfected DWDS may be more important than previously considered. In general, non-disinfected DWDSs harbor higher microbial richness and maintaining disinfectant residual is significantly important for ensuring low microbial numbers and diversity. Metagenomic binning recovered 139 (138 bacterial and 1 archaeal) metagenome-assembled genomes (MAGs) that had a >50% completeness and <10% contamination consisting of 20 class representatives in 12 phyla. The presence and occurrence of nitrite-oxidizing bacteria (NOB)-like microorganisms have significant implications for nitrogen biotransformation in drinking water systems. The metabolic and functional complexity of the microbiome is evident in DWDSs ecosystems. A comparative analysis found a set of differentially abundant taxonomic groups and functional traits in the active community. The broader set of transcribed genes may indicate an active and diverse community regardless of the treatment methods applied to water. The results indicate a highly dynamic and diverse microbial community and confirm that every DWDS is unique, and the community reflects the selection pressures exerted at the community structure, but also at the levels of functional properties and metabolic potential.


Assuntos
Desinfetantes , Água Potável , Microbiota , Metagenoma , Água Potável/microbiologia , Finlândia , Bactérias/metabolismo , Microbiota/genética , Archaea/genética , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...